A max-flow algorithm for positivity of Littlewood-Richardson coefficients

نویسندگان

  • Peter Bürgisser
  • Christian Ikenmeyer
چکیده

Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time. This follows by combining the saturation property of Littlewood-Richardson coefficients (shown by Knutson and Tao 1999) with the well-known fact that linear optimization is solvable in polynomial time. We design an explicit combinatorial polynomial time algorithm for deciding the positivity of Littlewood-Richardson coefficients. This algorithm is highly adapted to the problem and it is based on ideas from the theory of optimizing flows in networks. Résumé. Les coefficients de Littlewood-Richardson sont les multiplicités dans la décomposition du produit tensoriel de deux représentations irréductibles du groupe général linéaire GL(n,C). Ces coefficients ont plusieurs interprétations en combinatoire, en théorie des représentations et en géométrie. Mulmuley et Sohoni ont observé qu’on peut décider si un coefficient de Littlewood-Richardson est positif en temps polynomial. C’est une conséquence de la propriété de saturation des coefficients de Littlewood-Richardson (démontrée par Knutson et Tao en 1999) et le fait bien connu que la programmation linéaire est possible en temps polynomial. Nous décrivons un algorithme combinatoire pour décider si un coefficient de Littlewood-Richardson est positif. Cet algorithme est bien adapté au problème et il utilise des idées de la théorie des flots maximaux sur des réseaux. 2000 Mathematical Subject Classification. Primary 05E05. Secondary 90 C27.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciding Positivity of Littlewood-Richardson Coefficients

Starting with Knutson and Tao’s hive model [KT99], we characterize the Littlewood– Richardson coefficient c λ,μ of given partitions λ, μ, ν ∈ N as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding c λ,μ > 0. This algorithm is easy to state and takes O (

متن کامل

Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients

We point out that the remarkable Knutson and Tao Saturation Theorem [9] and polynomial time algorithms for linear programming [14] have together an important, immediate consequence in geometric complexity theory [15, 16]: The problem of deciding positivity of Littlewood-Richardson coefficients belongs to P ; cf.[10]. Specifically, for GLn(C), positivity of a Littlewood-Richardson coefficient cα...

متن کامل

From Littlewood-richardson Coefficients to Cluster Algebras in Three Lectures

This is an expanded version of the notes of my three lectures at a NATO Advanced Study Institute “Symmetric functions 2001: surveys of developments and perspectives” (Isaac Newton Institute for Mathematical Sciences, Cambridge, UK; June 25 – July 6, 2001). Lecture I presents a unified expression from [4] for generalized Littlewood-Richardson coefficients (= tensor product multiplicities) for an...

متن کامل

Estimating deep Littlewood-Richardson Coefficients

Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups (GLn). The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concav...

متن کامل

Equivariant Quantum Schubert Calculus

We study the T−equivariant quantum cohomology of the Grassmannian. We prove the vanishing of a certain class of equivariant quantum Littlewood-Richardson coefficients, which implies an equivariant quantum Pieri rule. As in the equivariant case, this implies an algorithm to compute the equivariant quantum Littlewood-Richardson coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008